## EXAMINATION PRACTICE 3

CANDIDATE NAME

| ENGLISH | CHINESE |
| :--- | :--- |

$\square$ Candidate No.

## MATHEMATICS

9709/04
Paper 4 Mechanics

## 30 Minutes

You must answer on this question paper.
You will need: List of formulae (MF19)

## READ THESE INSTRUCTIONS FIRST

- Answer all questions.
- Write your name, date \& class on all the work you hand in.
- Write in dark blue or black pen.
- You may use an HB pencil for any diagrams or graphs.
- Do not use staples, paper clips, glue, or correction fluid.
- Write your answer to each question in the space provided.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- Where a numerical value for the acceleration due to gravity is needed, use $10 \mathrm{~m} \mathrm{~s}^{-2}$.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.


## INFORMATION

- The total mark for this paper is $\mathbf{2 1 .}$
- The number of marks for each question or part question is shown in brackets [ ].

1 A car of mass 1150 kg travels up a straight hill inclined at $1.2^{\circ}$ to the horizontal. The resistance to motion of the car is 975 N . Find the acceleration of the car at an instant when it is moving with speed $16 \mathrm{~m} \mathrm{~s}^{-1}$ and the engine is working at a power of 35 kW .


The diagram shows the velocity-time graph for the motion of a machine's cutting tool. The graph consists of five straight line segments. The tool moves forward for 8 s while cutting and then takes 3 s to return to its starting position. Find
(i) the acceleration of the tool during the first 2 s of the motion,
(ii) the distance the tool moves forward while cutting,
(iii) the greatest speed of the tool during the return to its starting position.


A small ring of mass 0.8 kg is threaded on a rough rod which is fixed horizontally. The ring is in equilibrium, acted on by a force of magnitude 7 N pulling upwards at $45^{\circ}$ to the horizontal (see diagram).
(i) Show that the normal component of the contact force acting on the ring has magnitude 3.05 N , correct to 3 significant figures.
(ii) The ring is in limiting equilibrium. Find the coefficient of friction between the ring and the rod.

4


Coplanar forces of magnitudes $250 \mathrm{~N}, 160 \mathrm{~N}$ and 370 N act at a point $O$ in the directions shown in the diagram, where the angle $\alpha$ is such that $\sin \alpha=0.28$ and $\cos \alpha=0.96$. Calculate the magnitude of the resultant of the three forces. Calculate also the angle that the resultant makes with the $x$-direction.

