MECHANICS EXAMINATION

CANDIDATE NAME			
Date		Candidate No.	
MATHEN Paper 4 M			9709/02
	answer on this questioned: List of formulae		1 Hour 15 Minutes

READ THESE INSTRUCTIONS FIRST

- Answer **all** questions.
- Write your name, date & class on all the work you hand in.
- Write in dark blue or black pen.
- You may use an HB pencil for any diagrams or graphs.
- Do not use staples, paper clips, glue, or correction fluid.
- Write your answer to each question in the space provided.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- Where a numerical value for the acceleration due to gravity is needed, use 10 m s⁻².
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

dista		
(i)	Find the work done by the weightlifter.	[
		• • • • • • • • • • • • • • • • • • • •
(ii)	Given that the time taken to raise the mass is 1.2 s, find the average power dev	veloped by t
(ii)	Given that the time taken to raise the mass is 1.2 s, find the average power dev weightlifter.	
(ii)	Given that the time taken to raise the mass is 1.2 s, find the average power dev weightlifter.	
(ii)	Given that the time taken to raise the mass is 1.2 s, find the average power dev weightlifter.	
(ii)	Given that the time taken to raise the mass is 1.2 s, find the average power dev weightlifter.	
(ii)	Given that the time taken to raise the mass is 1.2 s, find the average power dev weightlifter.	
(ii)	weightlifter.	
(ii)	weightlifter.	
(ii)	weightlifter.	
(ii)	weightlifter.	
(ii)	weightlifter.	

	Find the time taken for the particle to reach a speed of $2.5 \mathrm{ms^{-1}}$.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	en the particle has travelled 3 m down the slope from its starting point, it reaches rough	horiz
u	en the particle has travelled 3 m down the slope from its starting point, it reaches rough and at the bottom of the slope. The frictional force acting on the particle is 1 N. Find the distance that the particle travels along the ground before it comes to rest.	horiz
u	and at the bottom of the slope. The frictional force acting on the particle is 1 N.	horiz
u	and at the bottom of the slope. The frictional force acting on the particle is 1 N.	horiz
u	and at the bottom of the slope. The frictional force acting on the particle is 1 N.	horiz
u	and at the bottom of the slope. The frictional force acting on the particle is 1 N.	horiz
u	and at the bottom of the slope. The frictional force acting on the particle is 1 N.	horiz
u	and at the bottom of the slope. The frictional force acting on the particle is 1 N.	horiz
u	and at the bottom of the slope. The frictional force acting on the particle is 1 N.	horiz
u	and at the bottom of the slope. The frictional force acting on the particle is 1 N.	horiz

A lorry of mass $24\,000\,\mathrm{kg}$ is travelling up a hill which is inclined at 3° to the horizontal. The power

	When the speed of the lorry is $25 \mathrm{ms^{-1}}$, its acceleration is $0.2 \mathrm{ms^{-2}}$. Find the by the lorry's engine.	e power develope [4
••		
••		
•••		
••		
••		
•••		
	Find the steady speed at which the lorry moves up the hill if the power is resistance remains 3200 N.	s 500 kW and t
••		
••		

Blocks P and Q, of mass $m \log$ and $S \log$ respectively, are attached to the ends of a light inextensible string. The string passes over a small smooth pulley which is fixed at the top of a rough plane inclined at 35° to the horizontal. Block P is at rest on the plane and block Q hangs vertically below the pulley (see diagram). The coefficient of friction between block P and the plane is 0.2. Find the set of values of *m* for which the two blocks remain at rest. [6]

A small bead Q can move freely along a smooth horizontal straight wire AB of length 3 m. Three horizontal forces of magnitudes F N, 10 N and 20 N act on the bead in the directions shown in the diagram. The magnitude of the resultant of the three forces is R N in the direction shown in the diagram.

Find the values of F and R .	[5

be	ad.	
•••		
		••••
•••		•••••
•••		
•••		
•••		• • • • • • • • • • • • • • • • • • • •
•••		•••••
•••		•••••
•••		
•••		
•••		• • • • • • • • • • • • • • • • • • • •
•••		•••••
•••		
•••		
•••		•••••
•••		• • • • • • • • • • • • • • • • • • • •

at time t s after leaving O is given by

A particle P moves in a straight line, starting from a point O. The velocity of P, measured in $m s^{-1}$,

1	Verify that, when $t = 5$, the particle is 6.25 m from O . Find the acceleration of the particle a time.

······································
 •••••

A cyclist starts from rest at point A and moves in a straight line with acceleration $0.5\,\mathrm{m\,s^{-2}}$ for a

	nd the total time that the cyclist takes to travel from A to B .
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	

24 s after the cyclist leaves point A, a car starts from rest from point A, with constant acceleration $4 \,\mathrm{m\,s^{-2}}$, towards B. It is given that the car overtakes the cyclist while the cyclist is moving with constant speed.

i)	Find the time that it takes from when the cyclist starts until the car overtakes her.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••

BLANK PAGE