EXAMINATION PRACTICE 2

CANDIDATE NAME

ENGLISH	CHINESE

\square Candidate No.

MATHEMATICS

9709/04
Paper 4 Mechanics

30 Minutes

You must answer on this question paper.
You will need: List of formulae (MF19)

READ THESE INSTRUCTIONS FIRST

- Answer all questions.
- Write your name, date \& class on all the work you hand in.
- Write in dark blue or black pen.
- You may use an HB pencil for any diagrams or graphs.
- Do not use staples, paper clips, glue, or correction fluid.
- Write your answer to each question in the space provided.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- Where a numerical value for the acceleration due to gravity is needed, use $10 \mathrm{~m} \mathrm{~s}^{-2}$.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 24.
- The number of marks for each question or part question is shown in brackets [].

Particles A and B are attached to the ends of a light inextensible string which passes over a smooth pulley. The system is held at rest with the string taut and its straight parts vertical. Both particles are at a height of 0.36 m above the floor (see diagram). The system is released and A begins to fall, reaching the floor after 0.6 s .
(i) Find the acceleration of A as it falls.

The mass of A is 0.45 kg . Find
(ii) the tension in the string while A is falling,
(iii) the mass of B,
(iv) the maximum height above the floor reached by B.
$7 \quad$ A particle P travels in a straight line from A to D, passing through the points B and C. For the section $A B$ the velocity of the particle is $\left(0.5 t-0.01 t^{2}\right) \mathrm{m} \mathrm{s}^{-1}$, where $t \mathrm{~s}$ is the time after leaving A.
(i) Given that the acceleration of P at B is $0.1 \mathrm{~m} \mathrm{~s}^{-2}$, find the time taken for P to travel from A to B.

The acceleration of P from B to C is constant and equal to $0.1 \mathrm{~m} \mathrm{~s}^{-2}$.
(ii) Given that P reaches C with speed $14 \mathrm{~m} \mathrm{~s}^{-1}$, find the time taken for P to travel from B to C. [3]
P travels with constant deceleration $0.3 \mathrm{~m} \mathrm{~s}^{-2}$ from C to D. Given that the distance $C D$ is 300 m , find
(iii) the speed with which P reaches D,
(iv) the distance $A D$.

