EXAMINATION PRACTICE 2

CANDIDATE NAME	ENGLISH	CHINESE
Date		Candidate No.
MATHEN Paper 4 M		9709/04
	answer on this question pape	or. 30 Minutes

You will need: List of formulae (MF19)

READ THESE INSTRUCTIONS FIRST

- Answer **all** questions.
- Write your name, date & class on all the work you hand in.
- Write in dark blue or black pen.
- You may use an HB pencil for any diagrams or graphs.
- Do not use staples, paper clips, glue, or correction fluid.
- Write your answer to each question in the space provided.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- Where a numerical value for the acceleration due to gravity is needed, use 10 m s⁻².
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is **24**.
- The number of marks for each question or part question is shown in brackets [].

This document has **3** pages. Blank pages are indicated.

Particles A and B are attached to the ends of a light inextensible string which passes over a smooth pulley. The system is held at rest with the string taut and its straight parts vertical. Both particles are at a height of 0.36 m above the floor (see diagram). The system is released and A begins to fall, reaching the floor after 0.6 s.

[2]

The mass of A is 0.45 kg. Find	
(ii) the tension in the string while A is falling,	[2]
(iii) the mass of B ,	[3]
(iv) the maximum height above the floor reached by B .	[3]

- 7 A particle *P* travels in a straight line from *A* to *D*, passing through the points *B* and *C*. For the section *AB* the velocity of the particle is $(0.5t 0.01t^2) \text{ m s}^{-1}$, where *t* s is the time after leaving *A*.
 - (i) Given that the acceleration of P at B is 0.1 m s^{-2} , find the time taken for P to travel from A to B. [3]

The acceleration of *P* from *B* to *C* is constant and equal to 0.1 m s^{-2} .

(ii) Given that *P* reaches *C* with speed 14 m s^{-1} , find the time taken for *P* to travel from *B* to *C*. [3]

P travels with constant deceleration 0.3 m s^{-2} from *C* to *D*. Given that the distance *CD* is 300 m, find (iii) the speed with which *P* reaches *D*, [2]

(iv) the distance *AD*.

[6]